Modeling Diurnal and Intraseasonal Variability of the Ocean Mixed Layer

نویسندگان

  • D. J. BERNIE
  • S. J. WOOLNOUGH
  • J. M. SLINGO
  • E. GUILYARDI
چکیده

The intraseasonal variability of SST associated with the passage of the Madden–Julian oscillation (MJO) is well documented; yet coupled model integrations generally underpredict the magnitude of this SST variability. Observations from the Improved Meteorological Instrument (IMET) mooring in the western Pacific during the intensive observing period (IOP) of the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) showed a large diurnal signal in SST that is modulated by the passage of the MJO. In this study, observations from the IOP of the TOGA COARE and a one-dimensional (1D) ocean mixed layer model incorporating the K-Profile Parameterization (KPP) vertical mixing scheme have been used to investigate the rectification of the intraseasonal variability of SST by the diurnal cycle and the implied impact of the absence of a representation of this process on the modeled intraseasonal variability in coupled GCMs. Analysis of the SST observations has shown that the increase of the daily mean SST by the diurnal cycle of SST accounts for about one-third of the magnitude of intraseasonal variability of SST associated with the Madden–Julian oscillation in the western Pacific warm pool. Experiments from the 1D model forced with fluxes at a range of temporal resolutions and with differing vertical resolution of the model have shown that to capture 90% of the diurnal variability of SST, and hence 95% of the intraseasonal variability of SST, requires a 3-h or better temporal resolution of the fluxes and a vertical grid with an upper-layer thickness of the order of 1 m. In addition to the impact of the representation of the diurnal cycle on the intraseasonal variability of SST, the strength of the mixing across the thermocline was found to be enhanced by the proper representation of the nighttime deep mixing in the ocean, implying a possible impact of the diurnal cycle onto the mean climate of the tropical ocean.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Atmospheric Intraseasonal Variability in the Indian Ocean: Low-Frequency Rectification in Equatorial Surface Current and Transport

An ocean general circulation model (OGCM) is used to investigate the low-frequency (period longer than 90 days) rectification of atmospheric intraseasonal variability (10–90-day periods) in zonal surface current and transport of the equatorial Indian Ocean. A hierarchy of OGCM solutions is found in an actual tropical Indian Ocean basin for the period of 1988–2001. To help to identify and isolat...

متن کامل

Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 1: a diurnally forced OGCM

The diurnal cycle is a fundamental time scale in the climate system, at which the upper ocean and atmosphere are routinely observed to vary. Current climate models, however, are not configured to resolve the diurnal cycle in the upper ocean or the interaction of the ocean and atmosphere on these time scales. This study examines the diurnal cycle of the tropical upper ocean and its climate impac...

متن کامل

Objective Array Design: Application to the Tropical Indian Ocean

A simple, versatile, computationally efficient ensemble-based method for objectively designing an observation array is described. The method seeks to compute the observation array that minimizes the analysis error variance, according to Kalman filter theory. While most elements of the method have been described elsewhere, this paper attempts to present a simple, yet comprehensive, recipe for ar...

متن کامل

A Numerical Investigation of Mixed-layer Processes in the Arabian Sea

My objectives for this ONR project were first to develop an ocean model that can accurately simulate Arabian-Sea mixed-layer variability at diurnal through annual time scales, and then to diagnose the processes that account for this variability in its solutions. I particularly wished to be able to simulate and understand the mixed-layer-thickness record determined from the WHOI mooring data at ...

متن کامل

Ocean–Atmosphere Coupling in the Monsoon Intraseasonal Oscillation: A Simple Model Study

A simple coupled model is used in a zonally symmetric aquaplanet configuration to investigate the effect of ocean–atmosphere coupling on the Asian monsoon intraseasonal oscillation. The model consists of a linear atmospheric model of intermediate complexity based on quasi-equilibrium theory coupled to a simple, linear model of the upper ocean. This model has one unstable eigenmode with a period...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003